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In a differential equation model of the molecular network governing cell growth and division, cell cycle
phases and transitions through checkpoints are associated with certain bifurcations of the underlying vector
field. If the cell cycle is driven by another rhythmic process, interactions between forcing and bifurcations lead
to emergent orbits and oscillations. In this paper, by varying the amplitude and frequency of forcing of the
synthesis rates of regulatory proteins and the mass growth rate in a minimal model of the eukaryotic cell cycle,
we study changes of the probability distributions of interdivision time and mass at division. By computing
numerically the Lyapunov exponent of the model, we show that the splitting of probability distributions is
associated with mode-locked solutions. We also introduce a simple, integrate-and-fire model to analyze mode
locking in the cell cycle.
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I. INTRODUCTION

Rhythmic processes are ubiquitous in living organisms
�1–4�, for example, the beating heart, the daily cycles of
waking and sleeping, and the physiological rhythms control-
ling the growth and proliferation of cells. Biological rhythms
interact with each other as well as with the outside environ-
ment. At the cellular or molecular level, one rhythmic pro-
cess can be forced by another. For instance, recent experi-
ments reveal that the intracellular circadian clock can
influence the cell-division cycle directly and unidirectionally
in proliferating cells �5�.

Significant research efforts have been devoted to uncov-
ering the molecular mechanisms of the eukaryotic cell cycle
�6� and circadian rhythms �7�. Detailed mathematical models
for these rhythms have been developed �8–11�. In light of the
recent report on cell cycle events driven by the circadian
clock �14�, and experiments on forcing the cell cycle by heat
�15�, light �16�, and hypertonic stress �17�, we have initiated
a mathematical study of forced cell cycle oscillations. Math-
ematical modeling has proven useful in suggesting cell cycle
experiments �12,13�.

Controlling biochemical regulatory systems by periodic
forcing in model systems has been a very active research
field �21–30�, demonstrating that forced oscillations display
resonance and chaos, whose characteristics and signatures
depend on biological specificities and nonlinearities in the
mathematical models. As far as cell cycle modeling is con-
cerned, there are two specific properties that interest us in
regard to periodic forcing �31–33�. First, in these models,
cell cycle phases G1/S/G2/M are not phases of a limit cycle
oscillator. Progression through the cell cycle and cell divison
are controlled by checkpoints which abruptly change the
state of the control system from one phase to the next. Thus,
responses to a periodic signal may be drastically different in
different phases of the cell cycle. Secondly, as the cell cycle
model can display birhythmicity, periodic forcing may

switch oscillations between two stable orbits, leading to
complexities that cannot occur in forced limit cycle oscilla-
tors.

The goal of this paper is to show that in a mathematical
model of the cell cycle, the interdivision time and the mass at
division can be controlled by the frequency and amplitude of
periodic forcing. This paper is organized as follows. The next
section gives a short introduction to a model that describes
cell growth and division. In Sec. III, we study the cell cycle
engine alone, considering the mass of the cell as a fixed
parameter. Here, by using bifurcation diagrams, we analyze
the possible shifts of bifurcation points due to forcing. In
Sec. IV, we simulate a forced cell cycle model which takes
into account the mass growth and cell division rules. We
identify emergent oscillations due to period doubling and
toruslike bifurcations, as well as the switching between
bistable orbits. We show that, depending on the parameters
of forcing, the probability distributions of interdivision time
and mass at division can split into isolated distributions. In
Sec. V, by computing the Lyapunov exponent of the minimal
model, we show that splitting of the probability distribution
is associated with the locking of the cell division cycle to the
frequency of forcing. In this section, we also study mode
locking in forced cell cycle oscillations by a simple, inte-
grate, and fire model. By analyzing its Lyapunov exponents,
we show that the mode-locking window is larger in the inte-
grate and fire model. The last section is devoted to discus-
sion.

II. A CELL CYCLE MODEL

A cell cycle model developed by Chen, Novak, Tyson,
and co-workers �8,32,35� can be written in a compact form
as

dx

dt
= Q�x,k,m� , �1�

dm

dt
= �m , �2�

where x is a vector of chemical concentrations controlling
cell cycle events, m is the cell mass, k is a vector of the*Corresponding author. Electronic address: dbattogt@vt.edu
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kinetic rate constants, and � is the specific growth rate of the
cells. Equation �1� describes the nonlinear interactions
among the molecules controlling the cell cycle engine, while
Eq. �2� describes cell growth. Equation �2� must be supple-
mented by a cell divison rule, m→�m, where 0���1,
which divides the cell whenever the activity of the cyclin-
dependent kinase �CDK� drops below a threshold xcdk,thr
�33�.

Based primarily on genetic studies of the cell cycle, de-
tailed mathematical models for different organisms have
been developed. Because of the homology of the key regu-
latory proteins, the core of the cell cycle regulation networks
in different organisms operate quite similarly. Therefore, a
minimal mathematical model of the cell cycle is expected to
display the generic features of the detailed models describing
cell cycles in different organisms �34�.

Let us consider the following minimal model of the cell
cycle,

dX

dt
= m�k1 + k2W� − �k3 + k4Y + k5Z�X , �3�

�Y
dY

dt
=

�k6 + k7Z��1 − Y�
J1 + 1 − Y

−
�k8m + k9X�Y

J1 + Y
, �4�

dZ

dt
= �k10 + k11X� − k12Z , �5�

�W
dW

dt
=

X�1 − W�
J2 + 1 − W

−
PW

J2 + W
. �6�

In the terminology of the budding yeast cell cycle
�35–37�, X stands for the cyclin-dependent kinase activity, Y
stands for the activity of Cdh1, Z stands for the activity of
Cdc20, and W stands for the activity of the transcription
factor, Mcm1, that controls the expression of the cyclin part-
ner of CDK. Equation �3� and Eq. �5� are given by simple
mass action laws, while Eqs. �4� and �6� describe the
Michaelis-Menten enzymatic reactions for the regulations of
Y and W.

III. PERIODIC FORCING OF THE CDK ENGINE

In the absence of forcing, cell cycle progression can be
understood by considering the dynamics of Eq. �1� at fixed

mass values, and then considering how m�t� changes as cells
grow and divide �38�. Equation �1� typically shows bistable
dynamics at small m and oscillatory dynamics at intermedi-
ate m �33� for different specific models and parameter sets.
Thus, our concern here is how forcing affects bifurcation
points for bistable and oscillatory dynamics. For mathemati-
cal convenience, let us simplify Eqs. �3�–�6� into a two vari-
able model,

dX

dt
= m�k1 + k2W*� − �k3 + k4Y* + k5Z�X , �7�

dZ

dt
= �k10 + k11X� − k12Z , �8�

where,

W* = G�X, P, J2, J2� , �9�

Y* = G�k6 + k7Z, k8m + k9X, J1, J1� . �10�

Equations �7� and �8� are obtained from Eqs. �3�–�6� in the
limit of �Y →0 and �W→0, by quasistationary assumptions
W�t�=W*�X� and Y�t�=Y*�X , Z�. W* and Y* are given by the
Goldbeter-Koshland function �3�,

G�a,b,c,d�

=
2ad

b − a + bc + ad + ��b − a + bc + ad�2 − 4ad�b − a�
.

�11�

The stationary solutions of Eqs. �7� and �8� can be found via
nullcline intersections. Depending on the parameters, there
can be either one, two or three steady states. If the parameter
m is small, the system displays bistability, while if the mass
is sufficiently large, there is a single steady state that can be
unstable to oscillations. Such a dependence of number of
steady states on mass is a generic feature of the cell cycle
models �18�. Using the corresponding parameter values pre-
sented in Table I, we show in Fig. 1 the nullclines of Eqs. �7�
and �8�, as well as birhythmicity—two stable oscillations
with different periods and amplitudes. We refer the readers
interested in more about birhythmicity to Refs. �3,19,20�.

Bifurcation diagrams are powerful tools for understanding
cell cycle dynamics. Interestingly, the cell cycle models de-
scribed by Eq. �1� display similar bifurcation diagrams in
wide regions of kinetic rates, which typically involve a

TABLE I. Model parameters.

Rate constants �min−1�

k1=0.002 k2=0.053 k3=0.01 k4=2 k5=0.05 k6=0.04 k7=1.5

k8=0.19 k9=0.64 k10=0.005 k11=0.07 k12=0.08 �=0.005 776

Other parameters �dimensionless�
P=0.15 J1=0.05 J2=0.01 �=0.5

Interdivision time in the absence of forcing �min�

Td=
ln 2

�
�120
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saddle node �SN�, a saddle node invariant circle �SNIC�,
Hopf bifurcations �HB�, and cyclicfold �CF� bifurcations.
For example, although Eqs. �7� and �8� are unrealistic and
too simplified for modeling the real physiology of the cell
cycle, the two variable system displays similar bifurcations
as Eqs. �3�–�6�.

In Fig. 2 we show a bifurcation diagram for Eqs. �7� and
�8� with the cell mass as the principal bifurcation parameter.
At small mass and the low activity of cyclin-dependent ki-
nase, there is a stable steady state which gives way to large
amplitude oscillations at a SNIC bifurcation �20�. The dotted
curve with the arrows in Fig. 2 shows the evolution of X and
m in the course of progression through the cell cycle. This
curve is computed from Eqs. �7� and �8� with the mass
growth equation �Eq. �2�� and the mass division rule ��
=0.5�. When the curve with arrows is close to the solid line
of the stable steady states with small values of X, the control
system is in the G1 phase of the cell cycle. As m grows, the
control system passes the SNIC bifurcation at mSNIC and the
cell enters the S phase. As mass increases further, the curve

with arrows is captured by the stable limit cycle. As a result,
X increases abruptly, driving the cell into a mitotic phase,
then X drops below Xthr=0.05, causing the cell to divide and
the control system returns to the stable G1 phase.

In Fig. 3 we show the continuation of the SNIC bifurca-
tion point in the parameter plane �m ,k10�, where k10 is the
synthesis rate of Cdc20. Let us consider a periodic modula-
tion k10→k10+�k10, where �k10=Ak10�1+sin�ft��. Figure 3
suggests that the forced system can move from an initially
oscillatory state to a stable steady state. Thus, the periodic
modulation of k10 can affect the cell cycle progression, as the
bifurcation point mSNIC marks the checkpoint for the G1–S
transition. Indeed, simulations at m�mSNIC show that forc-
ing leads to emergent, small amplitude, slow oscillations
near the steady state, as shown in Fig. 4. Such emergent
oscillations affect the cell cycle progression by increasing the
interdivision time.

Obviously, k10 is not the only parameter whose modula-
tions can shift bifurcation points. For example, the location
of the cyclicfold bifurcation, CF2, depends on the parameter
k2 �36,37�. Interestingly, at some interval of mass m, the
system is monorhythmic, but it displays either large ampli-
tude or small amplitude oscillations depending on the value

FIG. 1. Nullclines and birhythmicity in Eqs. �7� and �8�. Dashed
line; X nullcline, solid line; Z nullcline. Two dotted circles, marked
by LC1 and LC2, show two stable limit cycle oscillations. Mass is
fixed at m=4.2.

FIG. 2. A bifurcation diagram of Eqs. �7� and �8�. Solid line;
stable steady state, dashed line; unstable steady state, open circles;
unstable oscillations, filled circles; stable limit cycles. The dotted
curve with arrows shows the trajectory of motion when Eqs. �7� and
�8� are supplemented by the mass growth equation, ṁ=�m. The
cell divides �m→�m� when X drops below Xthr=0.05; hence the
trajectory undergoes an abrupt horizontal jump to the left at X
=Xthr.

FIG. 3. Two parameter bifurcation diagram. The solid line is the
continuation of the SNIC bifurcation. Dotted lines separate regions
with different oscillation periods �T�. Also indicated is a range of
perturbation of k10.

FIG. 4. Emergent orbits. Forcing may induce small amplitude,
slow oscillations near the steady state. The inset magnifies the re-
gion of the small amplitude oscillations near the steady state. The
parameters are: m=3.2, A=0.4, and f =0.003.
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of k2, as in Fig. 5. Therefore, periodic modulations of k2
→k2+�k2, �k2=Bk2�1+sin�ft�� can switch the system be-
tween orbits of fast and slow oscillations.

Periodic forcing of the rate constant k10 can be achieved
experimentally by putting a copy of the Cdc20 gene under
the control of a GAL promoter. By periodically shifting the
culture between galactose and glucose media, the GAL pro-
moter can be turned on and off, respectively. These nutrient
shifts will also cause the growth rate of the cells to change
periodically from smaller to larger values in galactose and
glucose media, respectively.

IV. FORCING A MINIMAL MODEL OF CELL CYCLE

In this section we study the periodic forcing of a minimal
model of the cell cycle which includes mass growth and cell
division. Experimentally, a simple way of forcing the cell
cycle is by the periodic modulations of the growth medium.
Because protein levels controlling the cell cycle depend on
the cell’s mass, modulations of the growth medium can indi-
rectly affect the dynamics of the cell cycle engine. On the
other hand, a localized perturbation of the cell cycle engine
can be carried out by periodic modulations of the levels of
the inducers and suppressors of the genes of the proteins
involved in cell cycle regulation. Note that perturbations us-
ing the GAL promoter will necessarily entail a concomitant
perturbation of growth rate.

For simplicity, consider the modulations of the synthesis
rate of only a single protein in a minimal cell cycle model,

dX

dt
= m�k1 + k2G�X,P,J2,J2�� − �k3 + k4Y + k5Z�X ,

�12�

dY

dt
=

�k6 + k7Z��1 − Y�
J2 + 1 − Y

−
�k8m + k9X�Y

J2 + Y
, �13�

dZ

dt
= k10 + �k10 + k11X − k12Z . �14�

dm

dt
= �� + ���m , �15�

where, �k10=Ak10�1+sin�ft�� and ��=B��1+sin�ft+�0��,
with A�0 and B�0. In the absence of forcing, Eqs.
�12�–�15� describe an important module in a detailed model
of a budding yeast �35�. We note that Eqs. �12�–�15� have
been used in our previous publications, with �k10=0 and
��=0, to model the effects of extrinsic noise and diffusion
�36,37�.

In the absence of forcing, the mass divides periodically as
X regularly drops below Xthr. Thus when A=B=0, the inter-
division time and mass at division are constants. At suffi-
ciently strong forcing, however, these two quantities fluctu-
ate and the probability distributions of these two quantities
change from delta functions to bimodal distributions, as in
Fig. 6. The sharp maxima at the edges of the distributions are
due to the fixed value of Xthr. If the threshold is a random
number with the mean Xthr and a certain variance, the
maxima are not sharp as in Fig. 6.

Let us define the widths of the probability distributions by
	T=Tr−Tl and 	m=mr−ml, where Tl, ml, Tr, and mr are
defined in Fig. 6. For simplicity let B=0. We found that if the
forcing frequency and amplitude are small, 	T and 	m in-
crease linearly with the increase of the intensity of forcing A.
Such a linear dependence is due to the relationship between
k10 and m along the SNIC curve which marks the G1—S
checkpoint, as in Fig. 3. Obviously, a SNIC bifurcation point
can be continued on any two-dimensional parameter plane,
using mass and a reaction rate other than k10, as the bifurca-
tion parameters. Therefore, the linear relationships, 	T and
	m versus A, are expected when other reaction rates are
perturbed.

In Fig. 7 we project on the �Y ,X� plane snapshots of dif-
ferent irregular oscillations in Eqs. �12�–�15�. Figure 7�a�
shows a period-doubling bifurcation which occurs when the
frequency and amplitude of forcing are small. It implies that,
as a result of forcing, cells divide at larger or smaller mass
than at A=0. Figure 7�b� shows toruslike motions which oc-
cur at small A and f 
0.6. Such emergent toruslike motions
originate from small amplitude, slow oscillations close to the
steady state, as seen in Fig. 4. A period-three orbit that also

FIG. 5. Cyclicfold bifurcations at k2=0.0689 �left� and k2

=0.0795 �right�. Open circles indicate unstable oscillations, filled
circles indicate stable oscillations. In the interval between the two
vertical solid lines, the system is monorhythmic but oscillates on
either a small or a large amplitude orbit depending on k2.

FIG. 6. A typical case of probability distributions of mass dou-
bling time and mass at division at weak forcing.
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involves toruslike motions at small X is shown in Fig. 7�c�.
Chaotic switching between birhythmic orbits are possible if
parameters are chosen such that the distance between the
orbits is sufficiently small. However, if the distance between
the orbits is large, a cell cycle arrest may occur, Fig. 7�d�.
This happens because X cannot drop below the threshold
when oscillations stay near the orbit of fast oscillations. As a
result, m grows without division, leading to cell cycle arrest.
The dynamics shown in Fig. 7 depend on the initial phase of
forcing, on intial values X0, Y0, and Z0, and on Xthr. For
example, if Xthr is small, the cell cycle arrests are likely,
whereas if it is sufficiently large, switching between the bi-
rhythmic orbits are more likely.

Depending on the emergent orbits, the interdivision time
and the mass at division vary. Figure 8 shows periodically
driven oscillations in Eqs. �12�–�15�. The solid curve shows
the cell division at discrete mass values, as the system dis-
plays a period-three orbit that includes toruslike motions �see
Fig. 7�c��. We know that with an increase of A, the probabil-
ity distributions of mass at the division and interdivision time
change from delta functions to distributions like those in Fig.
6. With a further increase of A, at the onset of the emergent
orbits �Fig. 7�, there is a transition when the probability dis-
tributions split into isolated distributions, Fig. 9.

Our simulations show that if A�0 and B�0, the interval
for the parameters A and B leading to splitting of the prob-
ability distributions is narrow. Also the isolated probability
distributions are stable only if B�A. The reason is that the
parameter B modulates the interdivision time Td, narrowing
the resonance conditions. In fact, when A�0 and B=0, a
splitting of the probability distributions occurs when the pe-
riod of forcing is a rational multiple of Td.

Note that the results presented in this section do not de-
pend on the wave form of the forcing function or the relative
phase �0. For instance, the linear relationships between the
widths of the probability distributions and A, as well as the
splitting of the probability distributions, have been observed
when we replace the sine wave by rectangular wave trains.

V. MODE LOCKING

Based on one’s previous knowledge of forced oscillatory
systems �2�, one would guess that the splitting of probability
distributions is associated with resonance, when the unper-
turbed oscillation frequency is a rational multiple of the forc-
ing frequency. Such a motion is also called mode locking and
it has a negative Lyapunov exponent indicating its periodic
nature. Thus, in order to show that the splitting of probability
distributions is associated with mode locking, we need to
calculate the Lyapunov exponents of Eqs. �12�–�15�. How-
ever, for systems like Eqs. �12�–�15�, which have temporal
discontinuties when the cell divides, the calculation of the
Lyapunov exponents is quite complicated. Using a method
developed in Ref. �39�, we numerically compute the maxi-
mal Lyapunov exponent of Eqs. �12�–�15�. We find that �=
−0.000 12 for the dynamics shown in Fig. 9, whereas, for the
unperturbed orbit �Fig. 2, A=B=0�, � is vanishing.

In Fig. 10 we show a series of cases when A=B�1. For
each value of A, we record a time interval during which the
cell divides 1000 times. The first row shows the distribution
of the interdivision times, Tn, and the second row shows the
distribution of mass at division, md. At values of A, where
the spectra are continuous, the probability distributions are
similar to the distributions shown in Fig. 6. At values, where
spectra are discrete, the probability distributions are similar
to Fig. 9. The third row shows the corresponding maximal
Lyapunov exponents. As expected, the minimum of � is lo-

FIG. 7. Emergent orbits in Eqs. �12�–�15�. �a� Period doubling.
�b� Toruslike motion. �c� A combination of bifurcations shown in �a�
and �b�. �d� Cell cycle arrest.

FIG. 8. Cell division under periodic forcing. Solid line shows
periodically modulated mass dynamics. Other lines show the oscil-
lations of X, Y, and Z, respectively. Parameters are as in Table I,
except A=1, f =0.07 �4:3 resonance�, Xtrh=0.05, k10=0.0025, and
B=0.

FIG. 9. Splitting of the probability distributions. Parameters are
the same as in Fig. 8.
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cated in the area where the system is in a mode-locked re-
gime.

According to Fig. 10, when A=B�1, the parameter win-
dow for mode-locked solutions in Eqs. �12�–�15� is quite
narrow �±0.2% � as discussed in the previous section. We
found that mode locking occurs in a wider parameter interval
�±5% � for the periodic forcing of an “integrate-and-fire”

model �2� of the cell cycle. In this toy model, mass growth is
given by

dm

dt
= �m + B��1 + sin�ft�� . �16�

The cell divides at time T�n� when m reaches the threshold
h�t�,

m−�T�n�� = lim
�→0

m�T�n� − �� = h�t� = m* + A�1 + sin�ft + �0�� .

�17�

At time T�n�, mass is reduced by a factor �� �0,1�

m+�T�n�� = lim
�→0

m�T�n� + �� = �h�t� . �18�

In Eq. �17� by forcing the threshold we imply forcing of the
cell cycle engine. m* is constant and T�n� is defined as,

T�n� = inf�t�m�t� � h�t�;t � T�n−1�	 . �19�

Note the difference between the forcing terms in Eq. �15�
and Eq. �16�. Following �28,40� , we calculate the Lyapunov
exponent of Eqs. �16�–�19�,

� = � + lim
n→

1

T�n� − T�0�

j=1

n

ln ���m + �−1B�1 + sin�fT�j��� − fA cos�fT�j� + �0�
�m + B�1 + sin�fT�j��� − fA cos�fT�j� + �0�

� . �20�

The system is periodic, quasiperiodic, and chaotic if ��0,
�=0, and �
0. In Eq. �20�, the first component accounts for
the continuous growth between cell divisions, while the sec-
ond component accounts for mass resets at the cell divisions.

In the absence of forcing, i.e., when A=B=0, the time
after the n division is T�n�=nTd. Assuming T�0�=0, we find
from Eq. �20� that �=�+ �ln �� / �Td�=0. If B=0 and A�0, �

can be negative only if T�n��Td. Also from Eq. �20� we see
that � can be negative if B�0.

The first two rows of Fig. 11 show distributions of the
time interval between divisions, Tn, and mass at division, md,
upon variations of A in Eqs. �16�–�19�. Continuous spectra at
a fixed A give probability distributions similar to Fig. 6,
whereas discrete spectra give probability distributions simi-
lar to Fig. 9. The last row of Fig. 11 reports the correspond-
ing Lyapunov exponents computed from Eq. �20�, which
show that the discrete spectra are associated with the nega-
tive values of �. Note that, in contrast to Fig. 10, the mode
locking interval is wider in Fig. 11. Our simulations confirm
that the mode locked solution is in 5:2 resonance. The cell
number in a culture cannot increase indefinitely. Therefore, n
is a finite number in our computations of Eq. �20�. We think
that the slightly positive values of � in Fig. 11 are due to the
numerical approximations associated with the finiteness of n.
Thus, at these values of � the oscillations are quasiperiodic.

VI. DISCUSSION

Cell cycle division is driven by a cell cycle “engine,” a
reaction network that involves many genes and proteins. The
engine is not a totally autonomous system, it interacts with
other reaction networks and with the environment. A very
interesting problem is whether cell cycle rhythms can be
controlled by other oscillatory processes in the cell, or by
periodic perturbations of environmental parameters.

FIG. 11. The bifurcation diagrams of Tn and md, and the corre-
sponding Lyapunov exponents of Eqs. �16�–�19�. Parameters are f
�0.0209, m*=2.5, �0=0, and A=B.

FIG. 10. A bifurcation diagram of Tn and md, and the corre-
sponding Lyapunov exponents for Eqs. �12�–�15�. The parameters
are the same as in Fig. 9 except A=B, f =0.035 �2:3 resonance�, and
k2=0.0795.
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In this work we considered the case, where the protein
involved in cell cycle regulation, is periodically modulated
by an inducer of its gene, and where such perturbations are
associated with the modulations of cell growth rate. Under
these conditions, we studied the effects of periodic forcing in
a minimal mathematical model of the yeast cell cycle. In
proliferating diploid yeast strains, interactions between the
cells are weak �35� and single cells behave independently. In
this case, probability distributions of interdivision time and
mass at a division calculated for a single cell over time can
be equated to the distributions characterizing a whole popu-
lation of cells at a given time. Our results show that if the
amplitude and frequency of the forcing is small, the width of
the distributions increases linearly with an increase of the
forcing amplitude. However, at stronger forcing amplitudes
and at some forcing frequencies, the probability distributions
may split into isolated distributions. By computing Lyapunov
exponents we showed that the splitting of the probability
distributions is associated with mode-locked solutions.

Although we considered a minimal model, our results are
expected to carry over into more detailed cell cycle models.
Indeed, in a recently published paper, Cross and Siggia stud-
ied mode locking in a more elaborate model of the budding
yeast cell cycle �41�. Our work uncovers some features of
mode locking in the cell cycle that are missing from the
paper by Cross and Siggia. First, we point out that the peri-
odic expression of a gene product from a GAL promoter

affects not only the rate of expression of the protein but also
the growth rate of the medium, because cells grow faster in
glucose than they do in galactose. If we assume that ṁ
=�m and periodically perturb �, then the mode locking win-
dows are narrow. If we assume ṁ=�0+�m and periodically
perturb �0 �as in the integrate and fire model�, then the mode
locking parameter windows are much wider. In addition, we
demonstrate the stability of the mode-locked solution by
computing the Lyapunov exponents.

The synchronization of periodic processes is a fundamen-
tal problem in science. Currently, synchronization and col-
lective dynamics of biological cells and distributed oscilla-
tors are an active research area �42–47�. Our integrate-and-
fire model for cell cycle progression can be useful in cell
cycle synchronization studies as the model is analytically
tractable. In the mode locking regime, cells can be synchro-
nized. Our preliminary results show that a cell culture with
cells, initially in random cell cycle phases, whose dynamics
are described by Eqs. �3�–�6� can be synchronized by peri-
odic forcing �48�.
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